ECE - II Year I Semester

22EC208 CONTROL SYSTEMS

Hours Per Week :

L	Т	Ρ	С
2	2	0	3

8L+8T+0P=12 Hours

8L+8T+0P=12 Hours

8L+8T+0P=12 Hours

8L+8T+0P=12 Hours

89

PRE-REQUISITE KNOWLEDGE: Basics of circuit theory, differentiation and complex numbers, and Laplace transform.

COURSE DESCRIPTION AND OBJECTIVES:

This course will focus on the, how to obtain mathematical model of any physical system. To be able to do time-domain and frequency-domain analyses of the model to predict the system's behavior. To be able to design control systems that meet design specifications.

MODULE-2

INTRODUCTION OF CONTROL SYSTEMS:

Motivation, Concept of control systems, classification of control systems, Transfer function and block diagram representation for electrical systems, block diagram algebra, signal flow graph representation.

UNIT-2

UNIT-1

TIME RESPONSE ANALYSIS AND STABILITY:

Time response analysis for first and second order system. Time domain specifications, Steady state response, Steady state errors, Characteristic equation of feedback control systems and Concept of stability, Routh-Hurwitz test.

PRACTICES:

- Plot various test signals.
- Determine systems that can be modeled by Ordinary Differential Equations (ODEs) and Transfer Function.
- Tell how the input affects the output (or, vice-versa, what inputs should be given to generate a desired output)
- analyze time domain specifications to understand system behavior
- analyze systems obtained as interconnections (e.g., feedback) of two or more other systems.
- analyze the effect of pole zero locations for on system behaviors time

MODULE- 2

PROPERTIES OF FEEDBACK:

Basic idea of feedback control systems. Error analysis. P, PI, PD, PID controllers. Design of controllers: The root-locus technique, steps in obtaining a root-locus. Design of controllers using root-locus.

UNIT-2

UNIT-1

FREQUENCY DOMAIN ANALYSIS:

Bode plot, Nyquist plot, Nyquist stability criterion, gain and phase margins, robustness. Design of compensator.

Error Actuating Input Error Controller Feedback Signal Feedback Signal

Source- https:// www.tutorial spoint.com/ control_systems/ control_systems_ introduction.htm

SKILLS:

- ✓ Model any physical system.
- Determine overall transfer function of a system using block diagram reduction technique and SFG method.
- ✓ Analyze first and second order systems in time domain.
- ✓ Determine design specifications like rise time, settling time, steady state error.
- ✓ Determine open loop gain variation in a stable system using root locus method.
- Stability analysis of any system in the time and frequency domain.

PRACTICES:

- Routh-Hurwitz criterion in terms of stability and root-locus techniques for performance by investigating the effect of parameter variations on the roots of the system characteristic equation.
- analyze the effect of variation of system gain
- Use Bode diagram approach to the design of lead, lag, and lag-lead compensator.
- Use Root Locus approach to the design of lead, lag, and lag-lead compensator.
- Design controller for various systems

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Applying different techniques for calcu-lating transfer function of a linear sys-tems.	Apply	1	1,2,3,4,5,10
2	Analyze the transient and steady state behavior of the open and closed loop systems.	Analyze	1,2	1,2,3,10,12
3	Calculate the stability of linear control system in	Evalu- ate	2	1,2,3,4,5
	time and frequency domain.			6,10,12
4	Design compensators and controller for a linear system.	Create	1,2	1,2,3,5, 6,10,12

TEXT BOOKS:

- J. Nagrath and M. Gopal, "Control Systems Engineering", 7th edition, New Age International (P) Limited, 2021.
- 2. Katsuhiko Ogata, "Modern Control Engineering", 5th edition, Prentice Hall of India Private Ltd, New Delhi, 2020.

REFERENCES:

- 1. M. Gopal, "Control Systems: Principles and Design", 3rd edition, McGraw Hill, 2008.
- 2. Benjamin C Kuo and Farid Golnaraghi, "Automatic Control systems", 9th edition, Prentice Hall of India Private Ltd, New Delhi, 2009.
- 3. Richerd C. Dorf and Robert H. Bishop, "Modern Control Systems", 12th edition, Prentice, Hall, 2010.